Nonequilibrium dynamics of the complex Ginzburg-Landau equation: Analytical results

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonequilibrium dynamics of the complex Ginzburg-Landau equation: analytical results.

We present a detailed analytical and numerical study of nonequilibrium dynamics for the complex Ginzburg-Landau equation. In particular, we characterize evolution morphologies using spiral defects. This paper is the first in a two-stage exposition. Here, we present analytical results for the correlation function arising from a single-spiral morphology. We also critically examine the utility of ...

متن کامل

Nonequilibrium Dynamics of the Complex Ginzburg-Landau Equation. I. Analytical Results

We present a detailed analytical and numerical study of nonequilibrium dynamics for the complex Ginzburg-Landau (CGL) equation. In particular, we characterize evolution morphologies using spiral defects. This paper (referred to as I) is the first in a two-stage exposition. Here, we present analytical results for the correlation function arising from a single-spiral morphology. We also criticall...

متن کامل

Nonequilibrium dynamics in the complex Ginzburg-Landau equation.

Results from a comprehensive analytical and numerical study of nonequilibrium dynamics in the two-dimensional complex Ginzburg-Landau equation have been presented. In particular, spiral defects have been used to characterize the domain growth law and the evolution morphology. An asymptotic analysis of the single-spiral correlation function shows a sequence of singularities-analogous to those se...

متن کامل

The Complex Ginzburg-landau Equation∗

Essential to the derivation of the Ginzburg-Landau equation is assumption that the spatial variables of the vector field U(x, y, t) are defined on a cylindrical domain. This means that (x, y) ∈ R ×Ω, where Ω ⊂ R is a open and bounded domain (and m ≥ 1, n ≥ 0), so that U : R ×Ω×R+ → R . The N ×N constant coefficient matrix Sμ is assumed to be non-negative, in the sense that all its eigenvalues a...

متن کامل

Dynamics of vortices for the Complex Ginzburg-Landau equation

We study a complex Ginzburg-Landau equation in the plane, which has the form of a Gross-Pitaevskii equation with some dissipation added. We focus on the regime corresponding to well-prepared unitary vortices and derive their asymptotic motion law. 2000 Mathematics Subject Classification: 35B20,35B40,35Q40,82D55.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2001

ISSN: 1063-651X,1095-3787

DOI: 10.1103/physreve.64.046206